suplementy diety bez tajemnic

LactoStop

Suplement diety LactoStop (tabletki) składający się z: Dwutlenek krzemu, Sole magnezowe kwasów tłuszczowych, Poliwinylopolipirolidon, Celuloza, β-galaktozydaza, Maltodekstryna. Zarejestrowano go w 2015 roku. Jego stan w rejestrze to: 0. suplement diety LactoStop został wyprodukowany przez suplementu diety, oraz zgłoszony do rejestracji przez SUN – FARM SP. Z O.O..

  • Informacje o suplemencie

    Skład: Dwutlenek krzemu, Sole magnezowe kwasów tłuszczowych, Poliwinylopolipirolidon, Celuloza, β-galaktozydaza, Maltodekstryna
    Forma: tabletki
    Kwalfikacja: S - Suplement diety
    Status produktu: UWAGA! Nieznany status

    Rok zgłoszenia: 2015
    Producent: SUN - FARM SP. Z O.O.
    Rejestrujący: SUN - FARM SP. Z O.O.
    Dodatkowe informacje: firma zrezygnowała z wprowadzania do obrotu

  • Informacje o składnikach suplementu

    Uwaga! Poniższe informacje nie stanowią informacji z ulotki produktu. Są to definicje encyklopedyczne dotyczące poszczególnych składników suplementu diety, nie są one bezpośrednio powiązane z produktem. Nie mogą one zastąpić informacji z ulotki, czy też porady lekarza lub farmaceuty. Są to jedynie informacje pomocnicze.

    dwutlenek krzemu - Ditlenek krzemu, krzemionka (nazwa Stocka: tlenek krzemu(IV)), SiO2 – nieorganiczny związek chemiczny z grupy tlenków, w którym krzem występuje na IV stopniu utlenienia. Zwykle jest krystalicznym ciałem stałym o dużej twardości. Występuje powszechnie na Ziemi jako minerał kwarc – składnik różnego rodzaju skał, piasku i wielu minerałów. Tworzy kamienie półszlachetne.

    poliwinylopolipirolidon - Biochemia piwa obejmuje przemiany chemiczne w produkcji i starzeniu się piwa, przebiegające z udziałem enzymów wytworzonych przez organizmy. Szczególne znaczenie w tych przemianach ma działalność drożdży piwowarskich oraz enzymy słodu. W artykule przedstawiono związki chemiczne wpływające na cechy sensoryczne współczesnego piwa oraz biochemiczne aspekty ich przemian. W piwie występuje ponad 800 związków, które tworzą jego smak i aromat. Podstawowymi składnikami piwa są woda, etanol oraz węglowodany. Wiele substancji silnie wpływających na cechy sensoryczne piwa występuje jedynie w śladowych ilościach. Mają one jednak kluczowe znaczenie dla jego ogólnej jakości z powodu niskich progów wyczuwalności. Związki te wykazują również liczne interakcje między sobą. Można wyróżnić efekt synergistyczny, kiedy jeden związek wzmaga percepcję drugiego, oraz antagonistyczny, kiedy jeden związek zmniejsza percepcję drugiego. Złożoność składu piwa, liczne interakcje oraz znaczenie nawet subtelnych różnic w stężeniu różnych związków powoduje spore trudności w uzyskaniu założonego profilu sensorycznego gotowego piwa.

    celuloza - Celuloza (z łac. cellula – „komórka”) – nierozgałęziony biopolimer, polisacharyd zbudowany liniowo z 3000–14 000 cząsteczek D-glukozy połączonych wiązaniami β-1,4-glikozydowymi (masa molowa 160–560 kg/mol). Łańcuchy te mają długość około siedmiu mikrometrów. Wiązanie β przyczynia się do utworzenia sztywnych, długich nitek, które układają się równolegle, tworząc micele połączone mostkami wodorowymi.

    β-galaktozydaza - Oddychanie komórkowe – wielostopniowy biochemiczny proces utleniania związków organicznych związany z wytwarzaniem energii użytecznej metabolicznie. Oddychanie przebiega w każdej żywej komórce w sposób stały. Zachodzi ono nawet wtedy, gdy inne procesy metaboliczne zostaną zahamowane. Chociaż istnieją różnice w przebiegu procesu oddychania u poszczególnych grup organizmów, to zestaw enzymów katalizujących poszczególne reakcje składające się na oddychanie jest zbliżony u wszystkich organizmów żywych. Zachodzenie oddychania jest jednym z najczęściej stosowanych wskaźników zachodzenia procesów życiowych. Jedynie wirusy będące strukturami na pograniczu życia i cząstek chemicznych nie przeprowadzają procesu oddychania. Chociaż substratem w reakcji oddychania mogą być wszystkie związki organiczne obecne w komórkach, najczęściej ogólną reakcję oddychania komórkowego zapisuje się dla utleniania cukru – glukozy w obecności tlenu: C6H12O6 + 6O2 → 6CO2 + 6H2O Energia uwolniona w procesie utleniania związków organicznych pojawia się częściowo w postaci związku wysokoenergetycznego – ATP, który może być wykorzystany do przeprowadzania reakcji chemicznych zachodzących w komórce lub do poruszania organizmu np. w tkance mięśniowej. Proces produkcji ATP nie przebiega ze 100% sprawnością i część energii uwalniana jest w postaci ciepła. Poza węglowodanami organizmy w procesie oddychania mogą utleniać tłuszcze oraz białka, a po bardziej złożonych modyfikacjach także pozostałe związki organiczne. Dla najczęściej używanego substratu, glukozy, reakcje oddychania komórkowego zachodzą na trzech szlakach metabolicznych: Glikoliza, w której glukoza przekształcana jest do kwasu pirogronowego i powstają niewielkie ilości ATP oraz NADH. Cykl Krebsa określany także cyklem kwasu cytrynowego lub cyklem kwasów trikarboksylowych, w którym kwas pirogronowy po przekształceniu do acetylo-CoA w cyklu przemian przekształcany jest do CO2 z wytworzeniem NADH, FADH2 oraz GTP lub ATP. Oddychanie końcowe, czyli mitochondrialny łańcuch transportu elektronów i fosforylacja oksydacyjna. W tym etapie zredukowane nukleotydy NADH, FADH2 są utleniane. W efekcie szeregu reakcji powstaje woda, a uwalniana energia zamieniana jest na ATP.Pierwszy z wymienionych etapów jest charakterystyczny dla utleniania węglowodanów i zachodzi w cytozolu. Dwa pozostałe etapy zachodzą u organizmów eukariotycznych w wyspecjalizowanych organellach – mitochondriach. W komórkach prokariontów enzymy biorące udział we wszystkich etapach oddychania znajdują się w cytozolu i błonie komórkowej. Tłuszcze oraz białka mogą być także włączane w cykl Krebsa. Wcześniej jednak tłuszcze rozkładane są do acetylo-CoA w procesie β-oksydacji, a białka muszą być rozłożone na aminokwasy, te zaś pozbawione reszty aminowej. Powstałe po odłączeniu reszty aminowej ketokwasy włączane są bezpośrednio lub po przekształceniu w reakcje glikolizy i cyklu kwasu cytrynowego. U organizmów, które stale lub okresowo nie mają dostępu do tlenu, wytwarzanie energii użytecznej biologicznie może polegać na niepełnym utlenieniu związków organicznych. Proces taki nazywany jest fermentacją. W efekcie fermentacji związki organiczne ulegają zarówno utlenianiu, jak i redukcji. Drugim sposobem uzyskania energii w warunkach beztlenowych jest utlenianie związków organicznych z wykorzystaniem utlenionych związków nieorganicznych np. azotanów, siarczanów, związków żelaza lub manganu, a nawet dwutlenku węgla. Związki te służą jako akceptory elektronów w łańcuchu transportu elektronów zbliżonym do łańcucha oddechowego zachodzącego przy przenoszeniu elektronów na tlen. Pozostałe etapy oddychania nie różnią się od oddychania tlenowego. Oba procesy zachodzące w warunkach beztlenowych mogą być określane jako oddychanie beztlenowe, jednak w mikrobiologii terminem oddychania beztlenowego określa się jedynie wykorzystywanie związków nieorganicznych w roli utleniacza. Fermentacje są traktowane jako oddzielna grupa procesów metabolicznych prowadzących do uzyskania energii użytecznej metabolicznie.

    maltodekstryna - Dekstryny – grupa złożonych węglowodanów, zbudowanych z pochodnych cukrów prostych, połączonych wiązaniami α-1,4-glikozydowymi, o długości od 3 do ok. 12–14 merów. Dekstryny powstają w wyniku enzymatycznej lub powodowanej kwasami mineralnymi hydrolizy skrobi. W przemyśle dekstryny są produkowane w wyniku katalitycznej hydrolizy skrobi pochodzącej między innymi z ziemniaków, kukurydzy, owsa, ryżu, tapioki. Dekstryny powstają w jamie ustnej w czasie wstępnego trawienia skrobi i innych cukrów złożonych, na skutek pękania wiązań α-1,4-glikozydowych, łączących mery glukozowe pod wpływem enzymów obecnych w ślinie, m.in. amylazy. Dekstryny są łatwo rozpuszczalnymi w wodzie, substancjami krystalicznymi o barwie białej. Rozróżnia się dekstryny liniowe (o otwartych łańcuchach) oraz dekstryny cykliczne, o kształcie toroidalnym zwane cyklodekstrynami. Wszystkie dekstryny są stosunkowo łatwo przyswajalne, gdyż po spożyciu ulegają takiemu samemu rozkładowi do glukozy, jak inne cukry złożone. Dekstryny mają szereg zastosowań praktycznych, ze względu na łatwość ich produkcji i niską cenę. Są m.in. stosowane jako nietoksyczne kleje biurowe o charakterystycznym słodkim smaku, substancje zagęszczające w produkcji słodyczy oraz tanie masy plastyczne, z których produkować można np. jednorazowe, ekologiczne naczynia. W farmacji dekstryny są stosowane jako składniki mas tabletkowych oraz otoczki tabletek i kapsułek, które po spożyciu same rozpuszczają się w przewodzie pokarmowym. W medycynie wodne roztwory dekstryn, są stosowane jako płyny krwiozastępcze, gdyż stosunkowo łatwo jest uzyskać z dekstryn roztwór o odpowiedniej lepkości umożliwiającej ich podawanie dożylne w postaci wlewu kroplowego. Cyklodekstryny, dzięki swojej unikatowej budowie, są stosowane jako cząsteczki zdolne do transportu leków do ściśle określonych tkanek.

    (źródło informacji o składnikach: Wikipedia)

Tagi:  ,
{{ reviewsOverall }} / 5 Ocena użytkowników (0 głosy)
Cena0
Skuteczność0
Działania uboczne0
Opinie klientów Dodaj swoją opinię
Sortuj po:

Dodaj pierwszą opinię o tym produkcie.

Zweryfikowany
{{{review.rating_comment | nl2br}}}

Pokaż więcej
{{ pageNumber+1 }}
Dodaj swoją opinię