suplementy diety bez tajemnic

Infla-Heal Plus

Suplement diety Infla-Heal Plus zawiera w składzie: Cynk, Chlorowodorek l-cysteiny, Serrapeptaza, Papaina, Rutyna, Trypsyna, Bromelina, Enzymy trzustkowe. Zgłoszono go do rejestracji w roku 2018. Jego obecny stan w rejestrze to: weryfikacja w toku. Ten suplement diety został wyprodukowany przez New Roots Herbal, oraz zgłoszony do rejestracji przez MWS Maciej Zubiel.

  • Informacje o suplemencie

    Skład: Cynk, Chlorowodorek l-cysteiny, Serrapeptaza, Papaina, Rutyna, Trypsyna, Bromelina, Enzymy trzustkowe
    Forma: Kapsułki roślinne
    Kwalfikacja: s - suplement diety
    Status produktu: weryfikacja w toku

    Rok zgłoszenia: 2018
    Producent: New Roots Herbal
    Rejestrujący: MWS Maciej Zubiel
    Dodatkowe informacje:

  • Informacje o składnikach suplementu

    Uwaga! Poniższe informacje nie stanowią informacji z ulotki produktu. Są to definicje encyklopedyczne dotyczące poszczególnych składników suplementu diety, nie są one bezpośrednio powiązane z produktem. Nie mogą one zastąpić informacji z ulotki, czy też porady lekarza lub farmaceuty. Są to jedynie informacje pomocnicze.

    cynk - Cynk (Zn, łac. zincum) – pierwiastek chemiczny, metal przejściowy z grupy cynkowców w układzie okresowym (grupa 12). Odkryto 30 izotopów cynku z przedziału mas 54–83, z czego trwałe są izotopy 64Zn, 66Zn, 67Zn, 68Zn i 70Zn. Został odkryty w Indiach lub Chinach przed 1500 rokiem p.n.e. Do Europy wiedza o tym metalu zawędrowała dopiero w XVII wieku.

    chlorowodorek l-cysteiny - Aminokwasy, kwasy aminowe (skrót aa lub AA, od ang. amino acids) – grupa organicznych związków chemicznych zawierających zasadową grupę aminową oraz grupę karboksylową −COOH lub, w ogólniejszym ujęciu, dowolną grupę kwasową. Przykładem aminokwasu z grupą sulfonową −SO3H jest tauryna (kwas 2-aminoetanosulfonowy), a zawierającego grupę fosfonową −C−PO3H2 jest ciliatyna (kwas 2-aminoetanofosfonowy). Grupa aminowa może być pierwszorzędowa (−NH2), drugorzędowa (−NHR), trzeciorzędowa (−NR2) lub czwartorzędowa amoniowa (−NH+3). Aminokwasy z czwartorzędową grupą amoniową to związki z grupy betain, a ich przedstawicielem jest N,N,N-trimetyloglicyna (betaina), (CH3)3N+CH2COO−. Ponieważ aminokwasy zawierają zarówno grupę kwasową, jak i zasadową, zachodzi w nich wewnątrzcząsteczkowa reakcja kwas–zasada i związki te istnieją głównie w formie jonów obojnaczych. Jony obojnacze aminokwasów są rodzajem soli wewnętrznych (amfolitami), dlatego mają wiele właściwości typowych dla soli: są substancjami krystalicznymi o wysokich temperaturach topnienia, wykazują duże momenty dipolowe, są rozpuszczalne w wodzie, ale nierozpuszczalne w węglowodorach.

    papaina - Papaina (EC 3.4.22.2) – enzym z podklasy proteaz o niskiej specyficzności substratowej (proteoliza zachodzi niezależnie od tego jakie aminokwasy sąsiadują z wiązaniem peptydowym) otrzymywany z mleczka zielonych owoców i liści melonowca właściwego (od którego łacińskiej nazwy gatunkowej pochodzi nazwa papainy). Jest to substancja podobna do ludzkiej pepsyny. Uczestniczy w rozkładzie białek. Łańcuch papainy zbudowany jest z 212 reszt aminokwasowych, stabilizowany jest 4 mostkami dwusiarczkowymi (-S-S-) i tworzy dwie domeny podobnie jak insulina. Do osiągnięcia pełni aktywności enzymatycznej papaina musi mieć wolną grupę -SH i lekko kwaśne środowisko. Jest składnikiem sosów nadających kruchość potrawom mięsnym, soli zmiękczającej mięso oraz produktów kosmetycznych (peelingi chemiczne).

    rutyna - Rutyna, rutozyd (łac. rutosidum) – organiczny związek chemiczny z grupy glikozydów flawonoidowych. Naturalny związek pochodzenia roślinnego, pozyskiwany z kwiatów perełkowca japońskiego (Styphnolobium japonicum) i z ziela gryki (Fagopyrum esculentum). Wykazuje właściwości antyoksydacyjne. Jak większość flawonoidów ma właściwości uszczelniające naczynia i przeciwwysiękowe. Zapobiega powstawaniu niektórych wysoce reaktywnych wolnych rodników. Spowalnia utlenianie witaminy C (przedłuża tym samym jej działanie). Zmniejsza cytotoksyczność utlenionego cholesterolu. Wykazuje też działanie przeciwzapalne. Jest czasami błędnie nazywana witaminą P. Przede wszystkim wchodzi w skład preparatów farmaceutycznych łączących rutynę z witaminą C. Coraz częściej występuje także w suplementach diety (głównie preparaty multiwitaminowe). Po raz pierwszy rutyna została wyizolowana z ziela ruty zwyczajnej.

    trypsyna - Trypsyna (EC 3.4.21.4) – enzym trawienny wytwarzany przez część zewnątrzwydzielniczą trzustki. Jest wydzielany w postaci proenzymu – trypsynogenu, który wchodzi w skład soku trzustkowego. W dwunastnicy pod wpływem niewielkich nawet ilości innego enzymu - enterokinazy dochodzi do aktywacji trypsynogenu. Dzięki autokatalitycznej zdolności trypsyny (przy pH 7,9) szybko dochodzi do pełnego uczynnienia wydzielonego trypsynogenu. Trypsyna należy do endopeptydaz[potrzebny przypis]. Katalizuje hydrolizę wiązań peptydowych w miejscach, w których grupy karbonylowe należą do argininy albo lizyny. W centrum aktywnym trypsyny znajduje się seryna jako główny aminokwas kontaktowy, przez co trypsynę zalicza się do podpodklasy endopeptydaz serynowych. Optymalne warunki działania trypsyny to pH 7–9 i temperatura 37 °C. Efektem jej działania na białko są peptydy o różnej długości łańcucha.

    bromelina - Bromelina (bromelaina) – mieszanina enzymów proteolitycznych wytwarzana przez rośliny z rodzaju bromeliowatych. Ananasy zawierają co najmniej pięć enzymów znanych pod wspólną nazwą bromeliny, dwa główne enzymy określane są jako bromeliny A i B. Wytwarzanie przez rośliny enzymów proteolitycznych jest strategią obronną przed larwami owadów, dla których są one toksyczne.

    enzymy trzustkowe - Enzymy (z gr. ἔνζυμον, od ἔν en „w” i ζύμη dzýmē „zaczyn (za)kwas”) – wielkocząsteczkowe, w większości białkowe, katalizatory przyspieszające specyficzne reakcje chemiczne poprzez obniżenie ich energii aktywacji. Niemal wszystkie reakcje chemiczne związane z funkcjonowaniem organizmów żywych (a także wirusów) wymagają współudziału enzymów, by osiągnąć wystarczającą wydajność. Enzymy są wysoce specyficzne wobec substratów i wobec tego dany enzym katalizuje zaledwie kilka reakcji spośród wielu możliwych dla danych substratów. W ten sposób enzymy determinują procesy metaboliczne i biochemiczne związane z funkcjonowaniem organizmów żywych. Jak wszystkie katalizatory, enzymy obniżają energię aktywacji (Ea lub ΔG‡) reakcji chemicznej, przyspieszając w ten sposób przebieg reakcji (patrz: Struktury i mechanizmy działania). Większość reakcji enzymatycznych (tj. z udziałem enzymów) przebiega miliony razy szybciej niż ich niekatalizowane enzymatycznie odpowiedniki. Jednym z najszybciej działających znanych enzymów jest anhydraza węglanowa. Jedna cząsteczka tego enzymu potrafi w sprzyjających warunkach w jedną sekundę uwodnić od 104 do 106 cząsteczek dwutlenku węgla. Z kolei jedna cząsteczka jednego z najwolniejszych enzymów – lizozymu, katalizuje 1 akt elementarny co 2 sekundy. Jak wszystkie katalizatory, również enzymy nie zużywają się w trakcie przebiegu reakcji, a także nie wpływają na ich równowagę. Enzymy różnią się od zwykłych katalizatorów, przejawiając znacznie większą specyficzność substratową. Aktywność enzymatyczna może być zatrzymana lub obniżona przez inne cząsteczki – inhibitory. Wiele leków i trucizn jest inhibitorami enzymów. Z kolei aktywatory enzymatyczne to cząsteczki zwiększające aktywność enzymów. Ponadto aktywność enzymów zależy od parametrów fizykochemicznych środowiska reakcji, takich jak: temperatura, pH, siła jonowa, obecność niektórych jonów i innych. Znane są także biokatalizatory niebiałkowe. Należą do nich rybozymy, cząsteczki RNA o własnościach katalitycznych oraz deoksyrybozymy (DNAzymy) – fragmenty DNA zdolne do katalizowania pewnych reakcji. Enzymy niebiałkowe charakteryzują się nieco innymi mechanizmami reakcji i mniejszą różnorodnością katalizowanych reakcji, jednak ich kinetyka i mechanika działania może być analizowana i klasyfikowana za pomocą tych samych metod, jakie są używane dla enzymów białkowych. Istnieją ponadto sztucznie stworzone cząsteczki, zwane sztucznymi enzymami, które przejawiają podobną do enzymatycznej aktywność katalityczną. Liczne enzymy znalazły zastosowanie przemysłowe (patrz: Zastosowanie przemysłowe), m.in. w przemyśle spożywczym czy chemii leków. Wiele produktów używanych w gospodarstwach domowych zawiera enzymy w celu podniesienia wydajności ich działania, jak proszki do prania czy enzymatyczne wywabiacze do plam. Enzymy są także powszechnie używane we współczesnych naukach biologicznych i medycznych oraz w diagnostyce medycznej. Badaniem enzymów i ich działania zajmuje się enzymologia.

    (źródło informacji o składnikach: Wikipedia)

Tagi:  ,
{{ reviewsOverall }} / 5 Ocena użytkowników (0 głosy)
Cena0
Skuteczność0
Działania uboczne0
Opinie klientów Dodaj swoją opinię
Sortuj po:

Dodaj pierwszą opinię o tym produkcie.

Zweryfikowany
{{{review.rating_comment | nl2br}}}

Pokaż więcej
{{ pageNumber+1 }}
Dodaj swoją opinię